Expand and re-write using only one exponent:
$7^{4} \cdot 7^{2}=$
$3^{3} \cdot 3^{5}=$
Examine the exponents. Describe a shortcut to simplifying the expressions above?

Property 1: $\quad a^{r} \cdot a^{s}=$

Practice: $5^{3} \cdot 5^{6}=\quad x^{7} \cdot x^{8}=\quad x^{4} y \cdot x^{-3} y^{5}=$
Expand and re-write using only one exponent:
$\left(5^{3}\right)^{2}=$
$\left(3^{4}\right)^{2}=$
Examine the exponents. Describe a shortcut to simplifying the expressions above?

Property 2:
 $\left(a^{r}\right)^{s}=$

Practice:
$\left(4^{5}\right)^{6}=$
$\left(x^{-3}\right)^{-5}=$
Expand and re-write using exponent:
$(2 x)^{3}=$
$(3 x y)^{3}=$
Examine the exponents. Describe a shortcut to simplifying the expressions above?

Property 3: $\quad(a b)^{r}=$
Practice:
$(3 x)^{3}=$
$\left(4 x^{4}\right)^{3}=$
$(2 y)^{3}\left(y^{2}\right)=$

Expand and re-write using only one exponent:
$\frac{2^{7}}{2^{4}}=$
$\frac{x^{5}}{x^{3}}=$
$\frac{y^{14}}{y^{6}}=$
Examine the exponents and discuss a shortcut to simplifying the expressions above:

Property 4: $\quad \frac{a^{r}}{a^{s}}=$

Practice: $\frac{2^{15}}{2^{2}}=\quad \frac{x^{6}}{x^{9}}=\quad \frac{x^{7} y^{3}}{x^{6} y^{10}}=\quad \frac{y^{3} y^{6}}{y^{2}}=$
Expand and re-write using exponent:
$\left(\frac{3}{2}\right)^{3}=\square \quad\left(\frac{2}{5}\right)^{4}=$
Examine the exponents and discuss a shortcut to simplifying the expressions above:

Property 5: $\quad\left(\frac{a}{b}\right)^{r}=$
Practice:

$$
\left(\frac{x}{2}\right)^{3}=\quad\left(\frac{x^{2} y}{3}\right)^{4}=\quad\left(\frac{5}{y}\right)^{2}=
$$

Write each expression as a decimal and then convert to a fraction:
$2^{-1}=$
$2^{-2}=$
$2^{-3}=$
$2^{-4}=$

Examine the exponents and end result. Discuss a shortcut to simplifying the expressions above:

Definition: $\quad a^{-r}=$
Practice:

$$
2^{-3}=
$$

$$
x^{-2}=
$$

$$
y^{3} x^{-6}
$$

$$
2 x^{3} x^{-7}=
$$

$$
3 y^{2} x^{5} y^{-4}=
$$

Exponent Properties: The Zero Exponent Rule

Quotient	Use the quotient rule to write in the form a^{b}	Look at the original quotient, what is it as just a number?
$\frac{2^{3}}{2^{3}}$		
$\frac{5^{7}}{5^{7}}$		
$\frac{x^{20}}{x^{20}}$		

What do you think anything to the zero power should equal?
Definition: $\quad a^{0}=$

Exponent Properties: The Zero Exponent Rule		
Quotient	Use the quotient rule to write in the form a^{b}	Look at the original quotient, what is it as just a number?
$\frac{2^{3}}{2^{3}}$		
$\frac{5^{7}}{5^{7}}$		
$\frac{x^{20}}{x^{20}}$		
What do you think anything to the zero power should equal?		

Exponent Properties: The Zero Exponent Rule				
Quotient	Use the quotient rule to write in the form a^{b}	Look at the original quotient, what is it as just a number?		
$\frac{2^{3}}{2^{3}}$				
$\frac{5^{7}}{5^{7}}$				
$\frac{x^{20}}{x^{20}}$				
What do you think anything to the zero power should equal?				
Definition: $\quad a^{0}=$				

Area of a Square

$$
A=s^{2}
$$

Volume of a Cube

$$
V=s^{3}
$$

Volume of a rectangular Box

$$
V=l \cdot w \cdot h
$$

