

What are the solutions to the equation: (remember the zero-product property) $\left(\frac{-1}{2}, 0\right)(3,0)$

$$
\begin{aligned}
& 0=(x+5)(x-2) \\
& x+5=0 \\
& -5-5 \quad x-2=0 \\
& x=-5
\end{aligned}
$$

$$
\begin{aligned}
& 0=(2 x+1)(x-3) \\
& 2 x+1=0 \\
& -1-1 \\
& \frac{2 x}{2}=\frac{-1}{2} \\
& x=-3=0 \\
& x=-1 / 2 \\
& (-1 / 2,0)
\end{aligned}
$$

Objective -
To graph a quadratic function from intercept form.

When graphing a quadratic we will graph 4 things:
> x-intercepts
> y -intercept
> vertex

- The lowest point or the highest point on a parabola is called the vertex.
- For any y-intercept, the x-value is equal to: Zero.
- For any x-intercept, the y-value is equal to: Zero.
- To find the vertex, we will first find the x-value and then substitute that in the equation to find the corresponding y value.
> We can find the vertex 2 ways
$-x=\frac{-b}{2 a}$

- OR

W - halfway between the two x-intercepts.

Vertex: x-value of the vertex, we find
the halfway point, between x-intercepts.

Vertex:

$$
\begin{aligned}
& x=\frac{5+-1}{2}=\frac{4}{2}=2 \\
& y=(2-5)(2+1) \\
& y=(-3)(3) \\
& y=-9 \\
& \text { vertex }=(2,-9)
\end{aligned}
$$

