Bell Work \quad Get a new bell work $4 / 6 / 2=15$

1. What did you do over Spring Break?
2. Solve the following when $\mathrm{y}=0$.

$$
\begin{gathered}
y=3 x+15 \\
0=3 x+15 \\
-15-15 \\
\frac{-15}{3}=\frac{3 x}{3} \\
-5=x
\end{gathered}
$$

Before we have learned to solve linear functions.

Now we are going to learn to solve a quadratic function.

What does that mean?

Quadratic Function: $\begin{aligned} & \text { An equation with its highest } \\ & \text { exponent as 2. The graph looks like: } \psi \text { OR }\end{aligned}$

To Solve: Given one value, find the other.

These are quadratic functions:

$$
h(x)=3 x^{2}-2 x+5
$$

These are not:

$$
h(t)=t^{3}-4 x^{2}+16
$$

$f(x)=-4 x^{2}+12 x-6$

$$
g(x)=16 x^{2}-64
$$

Let's practice solving a quadratic function when $\mathrm{y}=0$.
What value are we looking for?

$$
y=16 x^{2}-64
$$

$$
0=16 x^{2}-64
$$

$$
+64 \quad+64
$$

$$
\begin{aligned}
& \frac{64}{16}=\frac{16 x^{2}}{16} \\
& \sqrt{4}=\sqrt{x^{2}}
\end{aligned}
$$

$$
\text { Let } y=0
$$

$$
y=2 x^{2}-72
$$

$$
\text { Factor: } \quad x^{2}+8 x+16=(x+4)(x+4)
$$

Factor out the GCF
(1)

$$
\frac{8 x^{2}+20 y}{4\left(2 x^{2}+5 y\right)}
$$

(2)

$$
\frac{4 x^{2}-4 x}{4 x(x-1)}
$$

(3)

$$
\frac{2 m^{2}+6 m n}{2 m(1 m+3 n)}
$$

