Bell Work
4/13/2015

Factor out the greatest common factor:

$$
6 x^{2}\left(1+4 x^{2}\right)=6 x^{2}+24 x^{4}
$$

What are the roots of the polynomial:

$$
\begin{aligned}
& x=5 \\
& x=-2
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{(x-5)(2 x+4)}=0 \\
& \begin{array}{l}
x-5=0 \\
+5+5 \\
x=5
\end{array} \\
& \begin{array}{r}
\frac{2 x}{2}=-4 \\
-4-4 \\
x-2
\end{array}
\end{aligned}
$$

When graphing a quadratic we will graph 4 things:
> x-intercepts
> y -intercept
> vertex

- The lowest point or the highest point on a parabola is called the vertex.
- For any y-intercept, the x-value is equal to: Zero.
- For any x-intercept, the y-value is equal to: Zero.
- To find the vertex, we will first find the x-value and then substitute that in the equation to find the corresponding y value.
$>$ We can find the vertex 2 ways
$-x=\frac{-b}{2 a} \quad a x^{2}+b x+c$
- OR

W - halfway between the two x-intercepts.

$$
y=(x-2)(x+4) \quad x \text {-intercept, let } y=0
$$

$$
\begin{gathered}
y \text {-intercept, let } x=0 \\
y=(x-2)(x+4) \\
y=(0-2)(0+4) \\
y=(-2)(4) \\
y=-8((0,-8)) \\
x=0
\end{gathered}
$$

Vertex: x-value of the vertex is halfway between the 2 x-intercepts. \downarrow

$$
\begin{aligned}
& x=\frac{2^{2}+4^{2}}{2}=\frac{-2}{2} \quad \text { Add then } \\
& x=-1
\end{aligned}
$$

To find the y-value, substitute the x-value into the equation.

$$
\begin{aligned}
& y=(x-2)(x+4) \\
& y=(-1-2)(-1+4) \\
& y=(-3)(3) \\
& y=-9 \\
& x=-1
\end{aligned} \rightarrow\left(\begin{array}{l}
\text { Vertex } \\
(-1,-9)
\end{array}\right.
$$

y-inter capt; let $x=0$

$$
\begin{aligned}
& y=(x-5)(x+1) \\
& y=(0-5)(0+1) \\
& y=(-5)(1) \\
& y=-5 \quad(0,-5) \\
& x=0
\end{aligned}
$$

Vertex x-intercepts added, then divided by d.

$$
x=\frac{5+-1}{2}=\frac{4}{2}=2
$$

$$
x=2
$$

Substitute x-value into the
 equation \& solve for y.

$$
\begin{gathered}
y=(2-5)(2+1) \\
y=(-3)(3) \\
y=-9
\end{gathered}
$$

$$
\begin{aligned}
& y=(x-5)(x+1) \quad x \text {-intercepts: } \text { let } y=0
\end{aligned}
$$

Assignment
Graphing Quadratics Practice 1

