Bell Work 1/20/2015

What are the 2 definitions for exponents

we developed last week?

$$C_{0} = 1$$

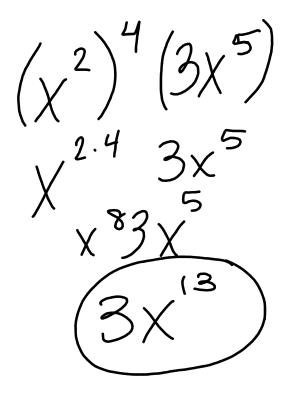
$$C_{0} = \frac{1}{\alpha}$$

$$C_{0} = \frac{1}{\alpha}$$

$$C_{0} = \frac{1}{\alpha}$$

Combining	Product of
Like Terms	Powers
x + x + x =	$x^r x^s =$

Power of Power of Products
$$(x^r)^s = (ab)^r =$$


Quotient	Powers of
Powers	a Quotient
$\frac{x^r}{x^s} =$	$\left(\frac{a}{b}\right)^r =$

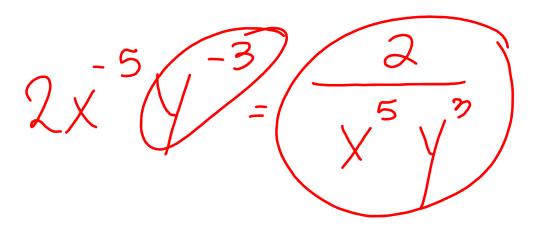
Back Cover
Definitions

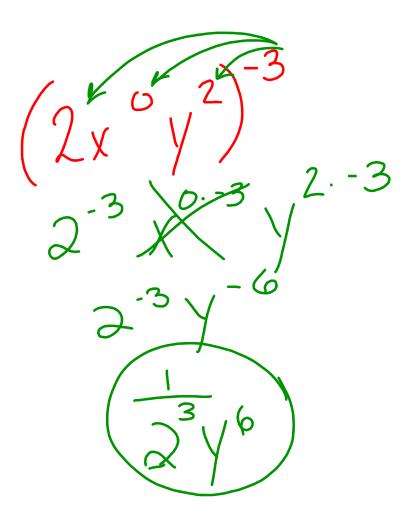
Today we are going to be using our properties of exponents on practice problems.

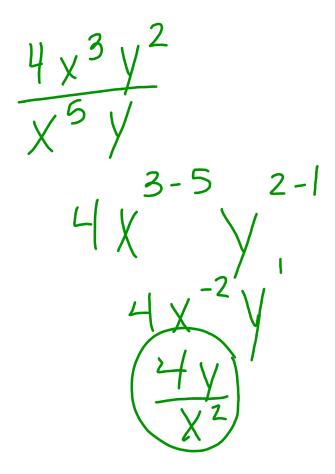
We will be using the white boards.

Please make sure that you have a white board, dry-erase marker and something to erase with.

$$\frac{5^{-2}}{5^{-3}} = 5^{-2+13} = 5^{1}$$


$$\frac{1}{3x^{-2}} = \frac{1}{3^{-2}x^{-2}} = \frac{3^2x^2}{3^2x^2}$$


$$\left(\left(6 W^{3} W^{4} W^{-6} \right)^{0} \right)$$


$$= \left(\frac{1}{2} \right)$$

$$\frac{2x^{3}}{(x^{1})^{3}}$$

$$\frac{2x^{3}}{(x^{1})^{3}} = \frac{2x^{3}}{(x^{3})^{3}} = \frac{2x^{3}}{(x^{3})^{$$

